ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04910
11
10

Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization

8 June 2020
Andrew Stirn
David A. Knowles
    DRL
ArXivPDFHTML
Abstract

Brittle optimization has been observed to adversely impact model likelihoods for regression and VAEs when simultaneously fitting neural network mappings from a (random) variable onto the mean and variance of a dependent Gaussian variable. Previous works have bolstered optimization and improved likelihoods, but fail other basic posterior predictive checks (PPCs). Under the PPC framework, we propose critiques to test predictive mean and variance calibration and the predictive distribution's ability to generate sensible data. We find that our attractively simple solution, to treat heteroscedastic variance variationally, sufficiently regularizes variance to pass these PPCs. We consider a diverse gamut of existing and novel priors and find our methods preserve or outperform existing model likelihoods while significantly improving parameter calibration and sample quality for regression and VAEs.

View on arXiv
Comments on this paper