ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06137
25
4
v1v2v3 (latest)

A multi-objective-based approach for Fair Principal Component Analysis

11 June 2020
G. D. Pelegrina
Renan D. B. Brotto
L. Duarte
R. Attux
João Marcos Travassos Romano
ArXiv (abs)PDFHTML
Abstract

In dimension reduction problems, the adopted technique may produce disparities between the representation errors of two or more different groups. For instance, in the projected space, a specific class can be better represented in comparison with the other ones. Depending on the situation, this unfair result may introduce ethical concerns. In this context, this paper investigates how a fairness measure can be considered when performing dimension reduction through principal component analysis. Since both reconstruction error and fairness measure must be taken into account, we propose a multi-objective-based approach to tackle the Fair Principal Component Analysis problem. The experiments attest that a fairer result can be achieved with a very small loss in the reconstruction error.

View on arXiv
Comments on this paper