ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06224
19
224

A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning

11 June 2020
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
ArXivPDFHTML
Abstract

Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many signal processing and machine learning applications. It is used for solving optimization problems similarly to gradient-based methods. However, it does not require the gradient, using only function evaluations. Specifically, ZO optimization iteratively performs three major steps: gradient estimation, descent direction computation, and solution update. In this paper, we provide a comprehensive review of ZO optimization, with an emphasis on showing the underlying intuition, optimization principles and recent advances in convergence analysis. Moreover, we demonstrate promising applications of ZO optimization, such as evaluating robustness and generating explanations from black-box deep learning models, and efficient online sensor management.

View on arXiv
Comments on this paper