ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07898
17
9

The JHU Multi-Microphone Multi-Speaker ASR System for the CHiME-6 Challenge

14 June 2020
Ashish Arora
Desh Raj
Aswin Shanmugam Subramanian
Ke Li
Bar Ben Yair
Matthew Maciejewski
Piotr Żelasko
Leibny Paola García-Perera
Shinji Watanabe
Sanjeev Khudanpur
ArXivPDFHTML
Abstract

This paper summarizes the JHU team's efforts in tracks 1 and 2 of the CHiME-6 challenge for distant multi-microphone conversational speech diarization and recognition in everyday home environments. We explore multi-array processing techniques at each stage of the pipeline, such as multi-array guided source separation (GSS) for enhancement and acoustic model training data, posterior fusion for speech activity detection, PLDA score fusion for diarization, and lattice combination for automatic speech recognition (ASR). We also report results with different acoustic model architectures, and integrate other techniques such as online multi-channel weighted prediction error (WPE) dereverberation and variational Bayes-hidden Markov model (VB-HMM) based overlap assignment to deal with reverberation and overlapping speakers, respectively. As a result of these efforts, our ASR systems achieve a word error rate of 40.5% and 67.5% on tracks 1 and 2, respectively, on the evaluation set. This is an improvement of 10.8% and 10.4% absolute, over the challenge baselines for the respective tracks.

View on arXiv
Comments on this paper