ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09034
15
17

Deep Learning based Segmentation of Fish in Noisy Forward Looking MBES Images

16 June 2020
J. H. Christensen
L. V. Mogensen
Ole Ravn
ArXivPDFHTML
Abstract

In this work, we investigate a Deep Learning (DL) approach to fish segmentation in a small dataset of noisy low-resolution images generated by a forward-looking multibeam echosounder (MBES). We build on recent advances in DL and Convolutional Neural Networks (CNNs) for semantic segmentation and demonstrate an end-to-end approach for a fish/non-fish probability prediction for all range-azimuth positions projected by an imaging sonar. We use self-collected datasets from the Danish Sound and the Faroe Islands to train and test our model and present techniques to obtain satisfying performance and generalization even with a low-volume dataset. We show that our model proves the desired performance and has learned to harness the importance of semantic context and take this into account to separate noise and non-targets from real targets. Furthermore, we present techniques to deploy models on low-cost embedded platforms to obtain higher performance fit for edge environments - where compute and power are restricted by size/cost - for testing and prototyping.

View on arXiv
Comments on this paper