ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09054
6
10

Quantization of Acoustic Model Parameters in Automatic Speech Recognition Framework

16 June 2020
Amrutha Prasad
P. Motlícek
S. Madikeri
    MQ
ArXivPDFHTML
Abstract

State-of-the-art hybrid automatic speech recognition (ASR) system exploits deep neural network (DNN) based acoustic models (AM) trained with Lattice Free-Maximum Mutual Information (LF-MMI) criterion and n-gram language models. The AMs typically have millions of parameters and require significant parameter reduction to operate on embedded devices. The impact of parameter quantization on the overall word recognition performance is studied in this paper. Following approaches are presented: (i) AM trained in Kaldi framework with conventional factorized TDNN (TDNN-F) architecture, (ii) the TDNN AM built in Kaldi loaded into the PyTorch toolkit using a C++ wrapper for post-training quantization, (iii) quantization-aware training in PyTorch for Kaldi TDNN model, (iv) quantization-aware training in Kaldi. Results obtained on standard Librispeech setup provide an interesting overview of recognition accuracy w.r.t. applied quantization scheme.

View on arXiv
Comments on this paper