Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray

Abstract
The CASH problem has been widely studied in the context of automated configurations of machine learning (ML) pipelines and various solvers and toolkits are available. However, CASH solvers do not directly handle black-box constraints such as fairness, robustness or other domain-specific custom constraints. We present our recent approach [Liu, et al., 2020] that leverages the ADMM optimization framework to decompose CASH into multiple small problems and demonstrate how ADMM facilitates incorporation of black-box constraints.
View on arXivComments on this paper