ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.09896
20
7

On the Learnability of Concepts: With Applications to Comparing Word Embedding Algorithms

17 June 2020
Adam Sutton
N. Cristianini
ArXivPDFHTML
Abstract

Word Embeddings are used widely in multiple Natural Language Processing (NLP) applications. They are coordinates associated with each word in a dictionary, inferred from statistical properties of these words in a large corpus. In this paper we introduce the notion of "concept" as a list of words that have shared semantic content. We use this notion to analyse the learnability of certain concepts, defined as the capability of a classifier to recognise unseen members of a concept after training on a random subset of it. We first use this method to measure the learnability of concepts on pretrained word embeddings. We then develop a statistical analysis of concept learnability, based on hypothesis testing and ROC curves, in order to compare the relative merits of various embedding algorithms using a fixed corpora and hyper parameters. We find that all embedding methods capture the semantic content of those word lists, but fastText performs better than the others.

View on arXiv
Comments on this paper