ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10380
22
43

Video Semantic Segmentation with Distortion-Aware Feature Correction

18 June 2020
Jiafan Zhuang
Zilei Wang
Bingke Wang
ArXivPDFHTML
Abstract

Video semantic segmentation is active in recent years benefited from the great progress of image semantic segmentation. For such a task, the per-frame image segmentation is generally unacceptable in practice due to high computation cost. To tackle this issue, many works use the flow-based feature propagation to reuse the features of previous frames. However, the optical flow estimation inevitably suffers inaccuracy and then causes the propagated features distorted. In this paper, we propose distortion-aware feature correction to alleviate the issue, which improves video segmentation performance by correcting distorted propagated features. To be specific, we firstly propose to transfer distortion patterns from feature into image space and conduct effective distortion map prediction. Benefited from the guidance of distortion maps, we proposed Feature Correction Module (FCM) to rectify propagated features in the distorted areas. Our proposed method can significantly boost the accuracy of video semantic segmentation at a low price. The extensive experimental results on Cityscapes and CamVid show that our method outperforms the recent state-of-the-art methods.

View on arXiv
Comments on this paper