ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.11939
11
16

Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: good to know what you don't know

21 June 2020
A. Alexanderian
N. Petra
G. Stadler
Isaac Sunseri
ArXivPDFHTML
Abstract

We consider optimal design of infinite-dimensional Bayesian linear inverse problems governed by partial differential equations that contain secondary reducible model uncertainties, in addition to the uncertainty in the inversion parameters. By reducible uncertainties we refer to parametric uncertainties that can be reduced through parameter inference. We seek experimental designs that minimize the posterior uncertainty in the primary parameters, while accounting for the uncertainty in secondary parameters. We accomplish this by deriving a marginalized A-optimality criterion and developing an efficient computational approach for its optimization. We illustrate our approach for estimating an uncertain time-dependent source in a contaminant transport model with an uncertain initial state as secondary uncertainty. Our results indicate that accounting for additional model uncertainty in the experimental design process is crucial.

View on arXiv
Comments on this paper