6
129

Near-Optimal Reinforcement Learning with Self-Play

Abstract

This paper considers the problem of designing optimal algorithms for reinforcement learning in two-player zero-sum games. We focus on self-play algorithms which learn the optimal policy by playing against itself without any direct supervision. In a tabular episodic Markov game with SS states, AA max-player actions and BB min-player actions, the best existing algorithm for finding an approximate Nash equilibrium requires O~(S2AB)\tilde{\mathcal{O}}(S^2AB) steps of game playing, when only highlighting the dependency on (S,A,B)(S,A,B). In contrast, the best existing lower bound scales as Ω(S(A+B))\Omega(S(A+B)) and has a significant gap from the upper bound. This paper closes this gap for the first time: we propose an optimistic variant of the \emph{Nash Q-learning} algorithm with sample complexity O~(SAB)\tilde{\mathcal{O}}(SAB), and a new \emph{Nash V-learning} algorithm with sample complexity O~(S(A+B))\tilde{\mathcal{O}}(S(A+B)). The latter result matches the information-theoretic lower bound in all problem-dependent parameters except for a polynomial factor of the length of each episode. In addition, we present a computational hardness result for learning the best responses against a fixed opponent in Markov games---a learning objective different from finding the Nash equilibrium.

View on arXiv
Comments on this paper