ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12293
51
2
v1v2 (latest)

DeepTopPush: Simple and Scalable Method for Accuracy at the Top

22 June 2020
V. Mácha
Lukáš Adam
Václav Smídl
ArXiv (abs)PDFHTML
Abstract

Accuracy at the top is a special class of binary classification problems where the performance is evaluated only on a small number of relevant (top) samples. Applications include information retrieval systems or processes with manual (expensive) postprocessing. This leads to minimizing the number of irrelevant samples above a threshold. We consider classifiers in the form of an arbitrary (deep) network and propose a new method DeepTopPush for minimizing the loss function at the top. Since the threshold depends on all samples, the problem is non-decomposable. We modify the stochastic gradient descent to handle the non-decomposability in an end-to-end training manner and propose a way to estimate the threshold only from values on the current minibatch and one delayed value. We demonstrate the excellent performance of DeepTopPush on visual recognition datasets and two real-world applications. The first one selects a small number of molecules for further drug testing. The second one uses real malware data, where we detected 46\% malware at an extremely low false alarm rate of 10−510^{-5}10−5.

View on arXiv
Comments on this paper