ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.14947
24
2
v1v2v3 (latest)

Distributed Policy Synthesis of Multi-Agent Systems With Graph Temporal Logic Specifications

25 June 2020
Murat Cubuktepe
Zhe Xu
Ufuk Topcu
ArXiv (abs)PDFHTML
Abstract

We study the distributed synthesis of policies for multi-agent systems to perform \emph{spatial-temporal} tasks. We formalize the synthesis problem as a \emph{factored} Markov decision process subject to \emph{graph temporal logic} specifications. The transition function and task of each agent are functions of the agent itself and its neighboring agents. In this work, we develop another distributed synthesis method, which improves the scalability and runtime by two orders of magnitude compared to our prior work. The synthesis method decomposes the problem into a set of smaller problems, one for each agent by leveraging the structure in the model, and the specifications. We show that the running time of the method is linear in the number of agents. The size of the problem for each agent is exponential only in the number of neighboring agents, which is typically much smaller than the number of agents. We demonstrate the applicability of the method in case studies on disease control, urban security, and search and rescue. The numerical examples show that the method scales to hundreds of agents with hundreds of states per agent and can also handle significantly larger state spaces than our prior work.

View on arXiv
Comments on this paper