ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15473
6
6

Interpretable and Trustworthy Deepfake Detection via Dynamic Prototypes

28 June 2020
Loc Trinh
Michael Tsang
Sirisha Rambhatla
Yan Liu
ArXivPDFHTML
Abstract

In this paper we propose a novel human-centered approach for detecting forgery in face images, using dynamic prototypes as a form of visual explanations. Currently, most state-of-the-art deepfake detections are based on black-box models that process videos frame-by-frame for inference, and few closely examine their temporal inconsistencies. However, the existence of such temporal artifacts within deepfake videos is key in detecting and explaining deepfakes to a supervising human. To this end, we propose Dynamic Prototype Network (DPNet) -- an interpretable and effective solution that utilizes dynamic representations (i.e., prototypes) to explain deepfake temporal artifacts. Extensive experimental results show that DPNet achieves competitive predictive performance, even on unseen testing datasets such as Google's DeepFakeDetection, DeeperForensics, and Celeb-DF, while providing easy referential explanations of deepfake dynamics. On top of DPNet's prototypical framework, we further formulate temporal logic specifications based on these dynamics to check our model's compliance to desired temporal behaviors, hence providing trustworthiness for such critical detection systems.

View on arXiv
Comments on this paper