101
v1v2v3v4v5v6 (latest)

Geometry-Inspired Top-k Adversarial Perturbations

Abstract

The brittleness of deep image classifiers to small adversarial input perturbations has been extensively studied in the last several years. However, the main objective of existing perturbations is primarily limited to change the correctly predicted Top-1 class by an incorrect one, which does not intend to change the Top-k prediction. In many digital real-world scenarios Top-k prediction is more relevant. In this work, we propose a fast and accurate method of computing Top-k adversarial examples as a simple multi-objective optimization. We demonstrate its efficacy and performance by comparing it to other adversarial example crafting techniques. Moreover, based on this method, we propose Top-k Universal Adversarial Perturbations, image-agnostic tiny perturbations that cause the true class to be absent among the Top-k prediction for the majority of natural images. We experimentally show that our approach outperforms baseline methods and even improves existing techniques of finding Universal Adversarial Perturbations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.