ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.15805
48
13
v1v2 (latest)

Higher-order fluctuations in dense random graph models

29 June 2020
Gursharn Kaur
Adrian Röllin
ArXiv (abs)PDFHTML
Abstract

Our main results are quantitative bounds in the multivariate normal approximation of centred subgraph counts in random graphs generated by a general graphon and independent vertex labels. The main motivation to investigate these statistics is the fact that they are key to understanding fluctuations of regular subgraph counts -- the cornerstone of dense graph limit theory -- since they act as an orthogonal basis of a corresponding L2L_2L2​ space. We also identify the resulting limiting Gaussian stochastic measures by means of the theory of generalised U-statistics and Gaussian Hilbert spaces, which we think is a suitable framework to describe and understand higher-order fluctuations in dense random graph models. With this article, we believe we answer the question "What is the central limit theorem of dense graph limit theory?".

View on arXiv
Comments on this paper