ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16068
16
3

The Evolutionary Dynamics of Independent Learning Agents in Population Games

29 June 2020
Shuyue Hu
Chin-wing Leung
Ho-fung Leung
Harold Soh
    AI4CE
ArXivPDFHTML
Abstract

Understanding the evolutionary dynamics of reinforcement learning under multi-agent settings has long remained an open problem. While previous works primarily focus on 2-player games, we consider population games, which model the strategic interactions of a large population comprising small and anonymous agents. This paper presents a formal relation between stochastic processes and the dynamics of independent learning agents who reason based on the reward signals. Using a master equation approach, we provide a novel unified framework for characterising population dynamics via a single partial differential equation (Theorem 1). Through a case study involving Cross learning agents, we illustrate that Theorem 1 allows us to identify qualitatively different evolutionary dynamics, to analyse steady states, and to gain insights into the expected behaviour of a population. In addition, we present extensive experimental results validating that Theorem 1 holds for a variety of learning methods and population games.

View on arXiv
Comments on this paper