ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16784
15
4

Concave Aspects of Submodular Functions

27 June 2020
Rishabh K. Iyer
J. Bilmes
ArXiv (abs)PDFHTML
Abstract

Submodular Functions are a special class of set functions, which generalize several information-theoretic quantities such as entropy and mutual information [1]. Submodular functions have subgradients and subdifferentials [2] and admit polynomial-time algorithms for minimization, both of which are fundamental characteristics of convex functions. Submodular functions also show signs similar to concavity. Submodular function maximization, though NP-hard, admits constant-factor approximation guarantees, and concave functions composed with modular functions are submodular. In this paper, we try to provide a more complete picture of the relationship between submodularity with concavity. We characterize the super-differentials and polyhedra associated with upper bounds and provide optimality conditions for submodular maximization using the-super differentials. This paper is a concise and shorter version of our longer preprint [3].

View on arXiv
Comments on this paper