ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.00715
27
0
v1v2 (latest)

Bayesian Coresets: An Optimization Perspective

1 July 2020
Jacky Y. Zhang
Rekha Khanna
Anastasios Kyrillidis
Oluwasanmi Koyejo
ArXiv (abs)PDFHTML
Abstract

Bayesian coresets have emerged as a promising approach for implementing scalable Bayesian inference. The Bayesian coreset problem involves selecting a (weighted) subset of the data samples, such that posterior inference using the selected subset closely approximates posterior inference using the full dataset. This manuscript revisits Bayesian coresets through the lens of sparsity constrained optimization. Leveraging recent advances in accelerated optimization methods, we propose and analyze a novel algorithm for coreset selection. We provide explicit convergence rate guarantees and present an empirical evaluation on a variety of benchmark datasets to highlight our proposed algorithm's superior performance compared to state of the art on speed and accuracy.

View on arXiv
Comments on this paper