ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01058
15
10
v1v2v3v4 (latest)

High-dimensional MANOVA via Bootstrapping and its Application to Functional and Sparse Count Data

2 July 2020
Zhenhua Lin
Miles E. Lopes
Hans-Georg Müller
ArXiv (abs)PDFHTML
Abstract

We propose a new approach to the problem of high-dimensional multivariate ANOVA via bootstrapping max statistics that involve the differences of sample mean vectors. The proposed method proceeds via the construction of simultaneous confidence regions for the differences of population mean vectors. It is suited to simultaneously test the equality of several pairs of mean vectors of potentially more than two populations. By exploiting the variance decay property that is a natural feature in relevant applications, we are able to provide dimension-free and nearly-parametric convergence rates for Gaussian approximation, bootstrap approximation, and the size of the test. We demonstrate the proposed approach with ANOVA problems for functional data and sparse count data. The proposed methodology is shown to work well in simulations and several real data applications.

View on arXiv
Comments on this paper