ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01593
11
17

Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset

3 July 2020
Sören Dittmer
T. Kluth
Mads Thorstein Roar Henriksen
Peter Maass
ArXivPDFHTML
Abstract

Magnetic particle imaging (MPI) is an imaging modality exploiting the nonlinear magnetization behavior of (super-)paramagnetic nanoparticles to obtain a space- and often also time-dependent concentration of a tracer consisting of these nanoparticles. MPI has a continuously increasing number of potential medical applications. One prerequisite for successful performance in these applications is a proper solution to the image reconstruction problem. More classical methods from inverse problems theory, as well as novel approaches from the field of machine learning, have the potential to deliver high-quality reconstructions in MPI. We investigate a novel reconstruction approach based on a deep image prior, which builds on representing the solution by a deep neural network. Novel approaches, as well as variational and iterative regularization techniques, are compared quantitatively in terms of peak signal-to-noise ratios and structural similarity indices on the publicly available Open MPI dataset.

View on arXiv
Comments on this paper