ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.01667
8
12

Reading Comprehension in Czech via Machine Translation and Cross-lingual Transfer

3 July 2020
K. Macková
Milan Straka
ArXivPDFHTML
Abstract

Reading comprehension is a well studied task, with huge training datasets in English. This work focuses on building reading comprehension systems for Czech, without requiring any manually annotated Czech training data. First of all, we automatically translated SQuAD 1.1 and SQuAD 2.0 datasets to Czech to create training and development data, which we release at http://hdl.handle.net/11234/1-3249. We then trained and evaluated several BERT and XLM-RoBERTa baseline models. However, our main focus lies in cross-lingual transfer models. We report that a XLM-RoBERTa model trained on English data and evaluated on Czech achieves very competitive performance, only approximately 2 percent points worse than a~model trained on the translated Czech data. This result is extremely good, considering the fact that the model has not seen any Czech data during training. The cross-lingual transfer approach is very flexible and provides a reading comprehension in any language, for which we have enough monolingual raw texts.

View on arXiv
Comments on this paper