ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.02235
167
62
v1v2v3 (latest)

Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels

5 July 2020
Yu-Ting Chou
Gang Niu
Hsuan-Tien Lin
Masashi Sugiyama
ArXiv (abs)PDFHTML
Abstract

In weakly supervised learning, unbiased risk estimator(URE) is a powerful tool for training classifiers when training and test data are drawn from different distributions. Nevertheless, UREs lead to overfitting in many problem settings when the models are complex like deep networks. In this paper, we investigate reasons for such overfitting by studying a weakly supervised problem called learning with complementary labels. We argue the quality of gradient estimation matters more in risk minimization. Theoretically, we show that a URE gives an unbiased gradient estimator(UGE). Practically, however, UGEs may suffer from huge variance, which causes empirical gradients to be usually far away from true gradients during minimization. To this end, we propose a novel surrogate complementary loss(SCL) framework that trades zero bias with reduced variance and makes empirical gradients more aligned with true gradients in the direction. Thanks to this characteristic, SCL successfully mitigates the overfitting issue and improves URE-based methods.

View on arXiv
Comments on this paper