ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.03373
6
3

Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening

7 July 2020
Louis Bethune
Yacouba Kaloga
Pierre Borgnat
Aurélien Garivier
Amaury Habrard
ArXivPDFHTML
Abstract

We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: i) The model is inductive: it can embed new graphs without re-training in the presence of new data; ii) The method takes into account both micro-structures and macro-structures by looking at the attributed graphs at different scales; iii) The model is end-to-end differentiable: it is a building block that can be plugged into deep learning pipelines and allows for back-propagation. We show that combining a coarsening method having strong theoretical guarantees with mutual information maximization suffices to produce high quality embeddings. We evaluate them on classification tasks with common benchmarks of the literature. We show that our algorithm is competitive with state of the art among unsupervised graph representation learning methods.

View on arXiv
Comments on this paper