ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.03378
14
1

C2G-Net: Exploiting Morphological Properties for Image Classification

7 July 2020
L. Herbsthofer
B. Prietl
M. Tomberger
Thomas W. Pieber
P. López-García
    MedIm
ArXiv (abs)PDFHTML
Abstract

In this paper we propose C2G-Net, a pipeline for image classification that exploits the morphological properties of images containing a large number of similar objects like biological cells. C2G-Net consists of two components: (1) Cell2Grid, an image compression algorithm that identifies objects using segmentation and arranges them on a grid, and (2) DeepLNiNo, a CNN architecture with less than 10,000 trainable parameters aimed at facilitating model interpretability. To test the performance of C2G-Net we used multiplex immunohistochemistry images for predicting relapse risk in colon cancer. Compared to conventional CNN architectures trained on raw images, C2G-Net achieved similar prediction accuracy while training time was reduced by 85% and its model was is easier to interpret.

View on arXiv
Comments on this paper