ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.03483
41
19
v1v2 (latest)

Skeletonization via Local Separators

7 July 2020
Andreas Bærentzen
E. Rotenberg
ArXiv (abs)PDFHTML
Abstract

We propose a new algorithm for curve skeleton computation which differs from previous algorithms by being based on the notion of local separators. The main benefits of this approach are that it is able to capture relatively fine details and that it works robustly on a range of shape representations. Specifically, our method works on shape representations that can be construed as a spatially embedded graphs. Such representations include meshes, volumetric shapes, and graphs computed from point clouds. We describe a simple pipeline where geometric data is initially converted to a graph, optionally simplified, local separators are computed and selected, and finally a skeleton is constructed. We test our pipeline on polygonal meshes, volumetric shapes, and point clouds. Finally, we compare our results to other methods for skeletonization according to performance and quality.

View on arXiv
Comments on this paper