ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.04584
12
22

VisImages: A Fine-Grained Expert-Annotated Visualization Dataset

9 July 2020
Dazhen Deng
Yihong Wu
Xinhuan Shu
Jiang Wu
Siwei Fu
Weiwei Cui
Yingnian Wu
ArXivPDFHTML
Abstract

Images in visualization publications contain rich information, e.g., novel visualization designs and implicit design patterns of visualizations. A systematic collection of these images can contribute to the community in many aspects, such as literature analysis and automated tasks for visualization. In this paper, we build and make public a dataset, VisImages, which collects 12,267 images with captions from 1,397 papers in IEEE InfoVis and VAST. Built upon a comprehensive visualization taxonomy, the dataset includes 35,096 visualizations and their bounding boxes in the images.We demonstrate the usefulness of VisImages through three use cases: 1) investigating the use of visualizations in the publications with VisImages Explorer, 2) training and benchmarking models for visualization classification, and 3) localizing visualizations in the visual analytics systems automatically.

View on arXiv
Comments on this paper