277
v1v2v3v4 (latest)

M-Evolve: Structural-Mapping-Based Data Augmentation for Graph Classification

IEEE Transactions on Network Science and Engineering (IEEE Trans. Netw. Sci. Eng.), 2020
Abstract

Graph classification, which aims to identify the category labels of graphs, plays a significant role in drug classification, toxicity detection, protein analysis etc. However, the limitation of scale in the benchmark datasets makes it easy for graph classification models to fall into over-fitting and undergeneralization. To improve this, we introduce data augmentation on graphs (i.e. graph augmentation) and present four methods:random mapping, vertex-similarity mapping, motif-random mapping and motif-similarity mapping, to generate more weakly labeled data for small-scale benchmark datasets via heuristic transformation of graph structures. Furthermore, we propose a generic model evolution framework, named M-Evolve, which combines graph augmentation, data filtration and model retraining to optimize pre-trained graph classifiers. Experiments on six benchmark datasets demonstrate that the proposed framework helps existing graph classification models alleviate over-fitting and undergeneralization in the training on small-scale benchmark datasets, which successfully yields an average improvement of 3 - 13% accuracy on graph classification tasks.

View on arXiv
Comments on this paper