ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.05838
15
9

Control as Hybrid Inference

11 July 2020
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
ArXivPDFHTML
Abstract

The field of reinforcement learning can be split into model-based and model-free methods. Here, we unify these approaches by casting model-free policy optimisation as amortised variational inference, and model-based planning as iterative variational inference, within a `control as hybrid inference' (CHI) framework. We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference. Using a didactic experiment, we demonstrate that the proposed algorithm operates in a model-based manner at the onset of learning, before converging to a model-free algorithm once sufficient data have been collected. We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines. CHI thus provides a principled framework for harnessing the sample efficiency of model-based planning while retaining the asymptotic performance of model-free policy optimisation.

View on arXiv
Comments on this paper