ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08751
13
32

Knowledge-Based Video Question Answering with Unsupervised Scene Descriptions

17 July 2020
Noa Garcia
Yuta Nakashima
ArXivPDFHTML
Abstract

To understand movies, humans constantly reason over the dialogues and actions shown in specific scenes and relate them to the overall storyline already seen. Inspired by this behaviour, we design ROLL, a model for knowledge-based video story question answering that leverages three crucial aspects of movie understanding: dialog comprehension, scene reasoning, and storyline recalling. In ROLL, each of these tasks is in charge of extracting rich and diverse information by 1) processing scene dialogues, 2) generating unsupervised video scene descriptions, and 3) obtaining external knowledge in a weakly supervised fashion. To answer a given question correctly, the information generated by each inspired-cognitive task is encoded via Transformers and fused through a modality weighting mechanism, which balances the information from the different sources. Exhaustive evaluation demonstrates the effectiveness of our approach, which yields a new state-of-the-art on two challenging video question answering datasets: KnowIT VQA and TVQA+.

View on arXiv
Comments on this paper