ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.09790
32
8

Generative Adversarial Stacked Autoencoders for Facial Pose Normalization and Emotion Recognition

19 July 2020
Ariel Ruiz-Garcia
Vasile Palade
M. Elshaw
M. Awad
    CVBM
    GAN
ArXivPDFHTML
Abstract

In this work, we propose a novel Generative Adversarial Stacked Autoencoder that learns to map facial expressions, with up to plus or minus 60 degrees, to an illumination invariant facial representation of 0 degrees. We accomplish this by using a novel convolutional layer that exploits both local and global spatial information, and a convolutional layer with a reduced number of parameters that exploits facial symmetry. Furthermore, we introduce a generative adversarial gradual greedy layer-wise learning algorithm designed to train Adversarial Autoencoders in an efficient and incremental manner. We demonstrate the efficiency of our method and report state-of-the-art performance on several facial emotion recognition corpora, including one collected in the wild.

View on arXiv
Comments on this paper