ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.10442
14
18

Unlocking the Potential of Deep Counterfactual Value Networks

20 July 2020
Ryan Zarick
Bryan Pellegrino
Noam Brown
Caleb Banister
    OffRL
ArXivPDFHTML
Abstract

Deep counterfactual value networks combined with continual resolving provide a way to conduct depth-limited search in imperfect-information games. However, since their introduction in the DeepStack poker AI, deep counterfactual value networks have not seen widespread adoption. In this paper we introduce several improvements to deep counterfactual value networks, as well as counterfactual regret minimization, and analyze the effects of each change. We combined these improvements to create the poker AI Supremus. We show that while a reimplementation of DeepStack loses head-to-head against the strong benchmark agent Slumbot, Supremus successfully beats Slumbot by an extremely large margin and also achieves a lower exploitability than DeepStack against a local best response. Together, these results show that with our key improvements, deep counterfactual value networks can achieve state-of-the-art performance.

View on arXiv
Comments on this paper