We study sampling from a target distribution using the unadjusted Langevin Monte Carlo (LMC) algorithm when the potential satisfies a strong dissipativity condition and it is first-order smooth with a Lipschitz gradient. We prove that, initialized with a Gaussian random vector that has sufficiently small variance, iterating the LMC algorithm for steps is sufficient to reach -neighborhood of the target in both Chi-squared and Renyi divergence, where is the logarithmic Sobolev constant of . Our results do not require warm-start to deal with the exponential dimension dependency in Chi-squared divergence at initialization. In particular, for strongly convex and first-order smooth potentials, we show that the LMC algorithm achieves the rate estimate which improves the previously known rates in both of these metrics, under the same assumptions. Translating this rate to other metrics, our results also recover the state-of-the-art rate estimates in KL divergence, total variation and -Wasserstein distance in the same setup. Finally, as we rely on the logarithmic Sobolev inequality, our framework covers a range of non-convex potentials that are first-order smooth and exhibit strong convexity outside of a compact region.
View on arXiv