A Closer Look at Art Mediums: The MAMe Image Classification Dataset
Art is an expression of human creativity, skill and technology. An exceptionally rich source of visual content. In the context of AI image processing systems, artworks represent one of the most challenging domains conceivable: Properly perceiving art requires attention to detail, a huge generalization capacity, and recognizing both simple and complex visual patterns. To challenge the AI community, this work introduces a novel image classification task focused on museum art mediums, the MAMe dataset. Data is gathered from three different museums, and aggregated by art experts into 29 classes of mediums (i.e. materials and techniques). For each class, MAMe contains a minimum of 850 high-resolution and variable shape images (700 for training, 150 for test). The combination of volume, resolution and shape allows MAMe to fill a void in current image classification challenges, empowering research in aspects so far overseen by the research community. After reviewing the singularity of MAMe in the context of current image classification tasks, a thorough description of the task is provided, together with dataset statistics. Experiments are conducted to evaluate the impact of using high-resolution images, variable shape inputs and both of these properties together. Results illustrate the positive impact in performance when using high-resolution images, while highlighting the lack of solutions to exploit variable shapes. An additional experiment exposes the distinctiveness between the MAMe dataset and the prototypical ImageNet dataset. Finally, the baselines are inspected using explainability methods and expert knowledge, to gain insights on the challenges that remain ahead.
View on arXiv