ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.13886
34
47

Perpetual Motion: Generating Unbounded Human Motion

27 July 2020
Yan Zhang
Michael J. Black
Siyu Tang
    3DH
ArXivPDFHTML
Abstract

The modeling of human motion using machine learning methods has been widely studied. In essence it is a time-series modeling problem involving predicting how a person will move in the future given how they moved in the past. Existing methods, however, typically have a short time horizon, predicting a only few frames to a few seconds of human motion. Here we focus on long-term prediction; that is, generating long sequences (potentially infinite) of human motion that is plausible. Furthermore, we do not rely on a long sequence of input motion for conditioning, but rather, can predict how someone will move from as little as a single pose. Such a model has many uses in graphics (video games and crowd animation) and vision (as a prior for human motion estimation or for dataset creation). To address this problem, we propose a model to generate non-deterministic, \textit{ever-changing}, perpetual human motion, in which the global trajectory and the body pose are cross-conditioned. We introduce a novel KL-divergence term with an implicit, unknown, prior. We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency. We perform systematic experiments to verify its effectiveness and find that it is superior to baseline methods.

View on arXiv
Comments on this paper