ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.14615
12
1

Translate the Facial Regions You Like Using Region-Wise Normalization

29 July 2020
Wenshuang Liu
Wenting Chen
Linlin Shen
    3DH
    CVBM
ArXivPDFHTML
Abstract

Though GAN (Generative Adversarial Networks) based technique has greatly advanced the performance of image synthesis and face translation, only few works available in literature provide region based style encoding and translation. We propose in this paper a region-wise normalization framework, for region level face translation. While per-region style is encoded using available approach, we build a so called RIN (region-wise normalization) block to individually inject the styles into per-region feature maps and then fuse them for following convolution and upsampling. Both shape and texture of different regions can thus be translated to various target styles. A region matching loss has also been proposed to significantly reduce the inference between regions during the translation process. Extensive experiments on three publicly available datasets, i.e. Morph, RaFD and CelebAMask-HQ, suggest that our approach demonstrate a large improvement over state-of-the-art methods like StarGAN, SEAN and FUNIT. Our approach has further advantages in precise control of the regions to be translated. As a result, region level expression changes and step by step make up can be achieved. The video demo is available at https://youtu.be/ceRqsbzXAfk.

View on arXiv
Comments on this paper