ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15589
14
2

Efficient Tensor Decomposition

30 July 2020
Aravindan Vijayaraghavan
ArXivPDFHTML
Abstract

This chapter studies the problem of decomposing a tensor into a sum of constituent rank one tensors. While tensor decompositions are very useful in designing learning algorithms and data analysis, they are NP-hard in the worst-case. We will see how to design efficient algorithms with provable guarantees under mild assumptions, and using beyond worst-case frameworks like smoothed analysis.

View on arXiv
Comments on this paper