ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.15960
12
78

On Learning Universal Representations Across Languages

31 July 2020
Xiangpeng Wei
Rongxiang Weng
Yue Hu
Luxi Xing
Heng Yu
Weihua Luo
    SSL
    VLM
ArXivPDFHTML
Abstract

Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations and show the effectiveness on cross-lingual understanding and generation. Specifically, we propose a Hierarchical Contrastive Learning (HiCTL) method to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on two challenging cross-lingual tasks, XTREME and machine translation. Experimental results show that the HiCTL outperforms the state-of-the-art XLM-R by an absolute gain of 4.2% accuracy on the XTREME benchmark as well as achieves substantial improvements on both of the high-resource and low-resource English-to-X translation tasks over strong baselines.

View on arXiv
Comments on this paper