ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00404
101
75
v1v2v3v4v5v6 (latest)

Detecting Beneficial Feature Interactions for Recommender Systems via Graph Neural Networks

2 August 2020
Yixin Su
Rui Zhang
S. Erfani
Zhenghua Xu
ArXiv (abs)PDFHTML
Abstract

Feature interactions are essential for achieving high accuracy in recommender systems. Many studies take into account the interaction between every pair of features. However, this is suboptimal because some feature interactions may not be that relevant to the recommendation result and taking them into account may introduce noise and decrease recommendation accuracy. To make the best out of feature interactions, we propose a graph neural network approach to effectively model them, together with a novel technique to automatically detect those feature interactions that are beneficial in terms of recommendation accuracy. The automatic feature interaction detection is achieved via edge prediction with an L0 activation regularization. Our proposed model is proved to be effective through the information bottleneck principle and statistical interaction theory. Experimental results show that our model (i) outperforms existing baselines in terms of accuracy, and (ii) automatically identifies beneficial feature interactions.

View on arXiv
Comments on this paper