ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00817
23
11

Retinal Image Segmentation with a Structure-Texture Demixing Network

15 July 2020
Shihao Zhang
Huazhu Fu
Yanwu Xu
Yanxia Liu
Mingkui Tan
ArXiv (abs)PDFHTML
Abstract

Retinal image segmentation plays an important role in automatic disease diagnosis. This task is very challenging because the complex structure and texture information are mixed in a retinal image, and distinguishing the information is difficult. Existing methods handle texture and structure jointly, which may lead biased models toward recognizing textures and thus results in inferior segmentation performance. To address it, we propose a segmentation strategy that seeks to separate structure and texture components and significantly improve the performance. To this end, we design a structure-texture demixing network (STD-Net) that can process structures and textures differently and better. Extensive experiments on two retinal image segmentation tasks (i.e., blood vessel segmentation, optic disc and cup segmentation) demonstrate the effectiveness of the proposed method.

View on arXiv
Comments on this paper