ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01216
12
9

Generalisable Cardiac Structure Segmentation via Attentional and Stacked Image Adaptation

3 August 2020
Hongwei Bran Li
Jianguo Zhang
Bjoern H. Menze
    MedIm
ArXivPDFHTML
Abstract

Tackling domain shifts in multi-centre and multi-vendor data sets remains challenging for cardiac image segmentation. In this paper, we propose a generalisable segmentation framework for cardiac image segmentation in which multi-centre, multi-vendor, multi-disease datasets are involved. A generative adversarial networks with an attention loss was proposed to translate the images from existing source domains to a target domain, thus to generate good-quality synthetic cardiac structure and enlarge the training set. A stack of data augmentation techniques was further used to simulate real-world transformation to boost the segmentation performance for unseen domains.We achieved an average Dice score of 90.3% for the left ventricle, 85.9% for the myocardium, and 86.5% for the right ventricle on the hidden validation set across four vendors. We show that the domain shifts in heterogeneous cardiac imaging datasets can be drastically reduced by two aspects: 1) good-quality synthetic data by learning the underlying target domain distribution, and 2) stacked classical image processing techniques for data augmentation.

View on arXiv
Comments on this paper