ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.02344
8
0

Exploiting Temporal Attention Features for Effective Denoising in Videos

5 August 2020
Aryansh Omray
Samyak Jain
Utsav Krishnan
Pratik Chattopadhyay
ArXivPDFHTML
Abstract

Video Denoising is one of the fundamental tasks of any videoprocessing pipeline. It is different from image denoising due to the tem-poral aspects of video frames, and any image denoising approach appliedto videos will result in flickering. The proposed method makes use oftemporal as well as spatial dimensions of video frames as part of a two-stage pipeline. Each stage in the architecture named as Spatio-TemporalNetwork uses a channel-wise attention mechanism to forward the encodersignal to the decoder side. The Attention Block used in this paper usessoft attention to ranks the filters for better training.

View on arXiv
Comments on this paper