ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.02648
14
2

Graph Wasserstein Correlation Analysis for Movie Retrieval

6 August 2020
Xueyao Zhang
Tong Zhang
Xiaobin Hong
Zhen Cui
Jian Yang
ArXivPDFHTML
Abstract

Movie graphs play an important role to bridge heterogenous modalities of videos and texts in human-centric retrieval. In this work, we propose Graph Wasserstein Correlation Analysis (GWCA) to deal with the core issue therein, i.e, cross heterogeneous graph comparison. Spectral graph filtering is introduced to encode graph signals, which are then embedded as probability distributions in a Wasserstein space, called graph Wasserstein metric learning. Such a seamless integration of graph signal filtering together with metric learning results in a surprise consistency on both learning processes, in which the goal of metric learning is just to optimize signal filters or vice versa. Further, we derive the solution of the graph comparison model as a classic generalized eigenvalue decomposition problem, which has an exactly closed-form solution. Finally, GWCA together with movie/text graphs generation are unified into the framework of movie retrieval to evaluate our proposed method. Extensive experiments on MovieGrpahs dataset demonstrate the effectiveness of our GWCA as well as the entire framework.

View on arXiv
Comments on this paper