ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05089
4
32

Quaternion Graph Neural Networks

12 August 2020
D. Q. Nguyen
T. Nguyen
Dinh Q. Phung
    GNN
ArXivPDFHTML
Abstract

Recently, graph neural networks (GNNs) have become an important and active research direction in deep learning. It is worth noting that most of the existing GNN-based methods learn graph representations within the Euclidean vector space. Beyond the Euclidean space, learning representation and embeddings in hyper-complex space have also shown to be a promising and effective approach. To this end, we propose Quaternion Graph Neural Networks (QGNN) to learn graph representations within the Quaternion space. As demonstrated, the Quaternion space, a hyper-complex vector space, provides highly meaningful computations and analogical calculus through Hamilton product compared to the Euclidean and complex vector spaces. Our QGNN obtains state-of-the-art results on a range of benchmark datasets for graph classification and node classification. Besides, regarding knowledge graphs, our QGNN-based embedding model achieves state-of-the-art results on three new and challenging benchmark datasets for knowledge graph completion. Our code is available at: \url{https://github.com/daiquocnguyen/QGNN}.

View on arXiv
Comments on this paper