ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06244
54
50

Cooperative Multi-Agent Bandits with Heavy Tails

14 August 2020
Abhimanyu Dubey
Alex Pentland
ArXiv (abs)PDFHTML
Abstract

We study the heavy-tailed stochastic bandit problem in the cooperative multi-agent setting, where a group of agents interact with a common bandit problem, while communicating on a network with delays. Existing algorithms for the stochastic bandit in this setting utilize confidence intervals arising from an averaging-based communication protocol known as~\textit{running consensus}, that does not lend itself to robust estimation for heavy-tailed settings. We propose \textsc{MP-UCB}, a decentralized multi-agent algorithm for the cooperative stochastic bandit that incorporates robust estimation with a message-passing protocol. We prove optimal regret bounds for \textsc{MP-UCB} for several problem settings, and also demonstrate its superiority to existing methods. Furthermore, we establish the first lower bounds for the cooperative bandit problem, in addition to providing efficient algorithms for robust bandit estimation of location.

View on arXiv
Comments on this paper