ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06814
6
7

Cascaded channel pruning using hierarchical self-distillation

16 August 2020
Roy Miles
K. Mikolajczyk
ArXivPDFHTML
Abstract

In this paper, we propose an approach for filter-level pruning with hierarchical knowledge distillation based on the teacher, teaching-assistant, and student framework. Our method makes use of teaching assistants at intermediate pruning levels that share the same architecture and weights as the target student. We propose to prune each model independently using the gradient information from its corresponding teacher. By considering the relative sizes of each student-teacher pair, this formulation provides a natural trade-off between the capacity gap for knowledge distillation and the bias of the filter saliency updates. Our results show improvements in the attainable accuracy and model compression across the CIFAR10 and ImageNet classification tasks using the VGG16and ResNet50 architectures. We provide an extensive evaluation that demonstrates the benefits of using a varying number of teaching assistant models at different sizes.

View on arXiv
Comments on this paper