ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.07819
11
3

ConvGRU in Fine-grained Pitching Action Recognition for Action Outcome Prediction

18 August 2020
Tianqi Ma
Lin Zhang
Xiumin Diao
Ou Ma
ArXivPDFHTML
Abstract

Prediction of the action outcome is a new challenge for a robot collaboratively working with humans. With the impressive progress in video action recognition in recent years, fine-grained action recognition from video data turns into a new concern. Fine-grained action recognition detects subtle differences of actions in more specific granularity and is significant in many fields such as human-robot interaction, intelligent traffic management, sports training, health caring. Considering that the different outcomes are closely connected to the subtle differences in actions, fine-grained action recognition is a practical method for action outcome prediction. In this paper, we explore the performance of convolutional gate recurrent unit (ConvGRU) method on a fine-grained action recognition tasks: predicting outcomes of ball-pitching. Based on sequences of RGB images of human actions, the proposed approach achieved the performance of 79.17% accuracy, which exceeds the current state-of-the-art result. We also compared different network implementations and showed the influence of different image sampling methods, different fusion methods and pre-training, etc. Finally, we discussed the advantages and limitations of ConvGRU in such action outcome prediction and fine-grained action recognition tasks.

View on arXiv
Comments on this paper