ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.08242
8
17

LIRA: Lifelong Image Restoration from Unknown Blended Distortions

19 August 2020
Jianzhao Liu
Jianxin Lin
Xin Li
Wei Zhou
Sen Liu
Zhibo Chen
    CLL
ArXivPDFHTML
Abstract

Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.

View on arXiv
Comments on this paper