ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.10041
9
5

Holistic Multi-View Building Analysis in the Wild with Projection Pooling

23 August 2020
Z. Wojna
Krzysztof Maziarz
Lukasz Jocz
Robert Paluba
Robert Kozikowski
Iasonas Kokkinos
ArXivPDFHTML
Abstract

We address six different classification tasks related to fine-grained building attributes: construction type, number of floors, pitch and geometry of the roof, facade material, and occupancy class. Tackling such a remote building analysis problem became possible only recently due to growing large-scale datasets of urban scenes. To this end, we introduce a new benchmarking dataset, consisting of 49426 images (top-view and street-view) of 9674 buildings. These photos are further assembled, together with the geometric metadata. The dataset showcases various real-world challenges, such as occlusions, blur, partially visible objects, and a broad spectrum of buildings. We propose a new projection pooling layer, creating a unified, top-view representation of the top-view and the side views in a high-dimensional space. It allows us to utilize the building and imagery metadata seamlessly. Introducing this layer improves classification accuracy -- compared to highly tuned baseline models -- indicating its suitability for building analysis.

View on arXiv
Comments on this paper