ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.10087
15
34

Blindness of score-based methods to isolated components and mixing proportions

23 August 2020
Wenliang K. Li
Heishiro Kanagawa
ArXivPDFHTML
Abstract

Statistical tasks such as density estimation and approximate Bayesian inference often involve densities with unknown normalising constants. Score-based methods, including score matching, are popular techniques as they are free of normalising constants. Although these methods enjoy theoretical guarantees, a little-known fact is that they exhibit practical failure modes when the unnormalised distribution of interest has isolated components -- they cannot discover isolated components or identify the correct mixing proportions between components. We demonstrate these findings using simple distributions and present heuristic attempts to address these issues. We hope to bring the attention of theoreticians and practitioners to these issues when developing new algorithms and applications.

View on arXiv
Comments on this paper